Design patterns for data-driven research acceleration

Rachana Ananthakrishnan, Kyle Chard, and Ian Foster
The University of Chicago and Argonne National Laboratory
Contact: rachana@globus.org

Introduction

Users of research computer centers increasingly need discipline-based data services. For example, researchers may want to distribute data from a disciplinary repository, make data collected at a scientific instrument accessible to remote collaborators, allow users to upload datasets for analysis (and retrieve results), or accept data for publication in a public archive. Providing such data acceleration services is a natural way for research computing centers to deliver enhanced value to their stakeholders. But implementing and operating such services can be expensive and cumbersome.

We describe here two common data-driven research acceleration design patterns that experience suggests are both pervasive across science and easily deployable at research computing centers. The purpose of a design pattern is to capture a solution to a design problem in a reusable form [3]. Thus, for each design pattern we introduce the problem that it solves, describe how it can be implemented, and present example realizations. While these patterns can be implemented in different ways, our implementations leverage the Globus research data management platform (globus.org) to simplify development, achieve high service reliability, and reduce administrative overheads associated with the operation of sophisticated services.

Design pattern #1: The Modern Research Data Portal

This first pattern addresses the need for high performance and secure delivery of large amounts of data. The need for exchange data has led to an explosion over recent decades in the number and variety of research data portals: systems that provide remote access to data repositories for such purposes as discovery and distribution of reference data, data upload for analysis and/or integration, and data sharing for collaborative analysis. In most such systems, a web server reads and writes a directly connected data repository in response to client requests.

The relative simplicity of this structure has allowed it to persist largely unchanged from the first days of the web. However, its monolithic architecture—in particular, its tight integration of control channel processing (request processing, user authentication) and data channel processing (routing of data to/from remote sources and data repositories) has increasingly become an obstacle to performance, usability, and security.

The modern research data portal (MRDP) design pattern [1] re-imagines the data portal in a much more scalable and performant form. As illustrated in Figure 1, portal functionality is decomposed along two distinct but complementary dimensions. First, control channel communications and data channel communications are separated, with the former handled by a portal web server computer deployed (most often) in the institution’s enterprise network and the latter by specialized data servers connected directly to high-speed networks and storage systems in a Science DMZ [2]. Second, responsibility for managing data transfers, data access, and sometimes also authentication is outsourced (in our examples, to cloud-hosted Globus services). The design pattern thus defines distinct roles for the portal server, which manages who is allowed to do what; data servers, where authorized operations are performed on data; and Globus services, which orchestrate data access.

The portal server is at the heart of the MRDP implementation. It sits behind the institutional firewall, from where it serves up web pages to users, responds to HTTP requests, and issues REST communications to
Globus services (and optionally other services) to implement MRDP behaviors. The REST communications are central to the power of the MRDP design pattern, as it is they that let the web server outsource many of the complex tasks associated with portal operations. Only the web server component needs to be provided for a specific implementation.

A separate document provides a detailed description of the MRDP design pattern [1] and a companion web site, docs.globus.org/mrdp, provides a reference implementation that the reader can deploy and adapt to build their own MRDP.

The basic MRDP design pattern is concerned with enabling high-speed download of data hosted on research computing center storage. Many variants of this basic pattern have been constructed. For example, the data that users access may come from an experimental facility rather than a data archive, in which case they may be deleted after download. Access may be granted to groups of users rather than individuals. Data may be publicly available; alternatively, access may require approval from portal administrators. A portal may allow its users to upload datasets for analysis and then retrieve analysis results. A data publication portal may accept data submissions from users, and load data that pass quality control procedures or curator approval into a public archive. Each of these variants can naturally be expressed in terms of the MRDP design pattern.

MRDP case study: Data distribution at the ARM Climate Research Facility. The Atmospheric Radiation Measurement (ARM) Climate Research Facility data archive, hosted at Oak Ridge National Laboratory, makes available continuous measurements data from field campaigns. The archive adds about 20 TB of data per month, and provides both data products and value added products. Increasing data volumes per user request makes simple in-browser download options insufficient, and scalable and reliable data transfer mechanisms are needed for end users. The facility also recognizes that results from user data requests need to be made available only to those users, and protected from access by others.

To address these challenges, ARM uses Globus platform APIs to integrate support for the Globus data sharing solution with their data processing system. Specifically, they use the APIs to create folders for each data request and to configure permissions such that only users who need access to the data can access the folder. A link to the shared folder is included in the notifications the ARM platform sends to its users when the data product is ready for download. With data access via the DTN node setup at ORNL, and Globus monitoring tools providing insights into transfer activities, the ARM team can provide their users a highly scalable and managed solution for data access. This use of the Globus platform APIs allows ARM to offer their familiar interfaces and portal to their users, with minimal change in their workflow to access enhanced data access tools.
Figure 3: Transfer rate vs. data size for the RDA portal: (a) all transfers and (b) only transfers from RDA to NERSC, with points in a larger size. Each point represents a single transfer, which may involve many files. Incoming and outgoing transfers are distinguished on the left, but RDA has only one incoming transfer.

MRDP case study: NCAR Research Data Archive. The Research Data Archive (RDA) project at the National Center for Atmospheric Research (NCAR) has a repository of several petabytes of climate data that they make available to the community. In addition to providing interfaces for data access, RDA also allows users to request derived or processed data, such as the results of re-analysis and subsetting operations. The primary interface for RDA users is a data portal that has search, download and processing capabilities. With growing data volumes, the RDA team identified the need for a scalable data management solution that included efficient and managed data transfer for end users. Leveraging the MRDP pattern, they integrated Globus sharing and transfer solutions to serve data to their users. RDA users continue to use their RDA login, search and discover datasets of interest, and optionally request derived data from the RDA portal. The RDA portal processes the request, and places the data on a Globus shared endpoint on a DTN hosted and operated at NCAR. The DTN is hosted on their Science DMZ, decoupled from the RDA portal, and configured and tuned for efficient data transfer. Using Globus APIs to integrate this into their data distribution workflow, RDA manages permissions on the shared endpoint to ensure the processed data is available only to the user who requested it. The user is notified once the data is ready for transfer via Globus. With the RDA login integrated with Globus Auth, the users get single sign on across the portal and Globus for data access and transfer.

The RDA services also monitor the data transfer activity to identify any issue and help in debugging them, and to determine if the user has downloaded the data made available. Figure 3, from Chard et al. [?], show the diversity of data downloads performed by a working MRDP instance, and (on the right), the high performance that can be achieved when both source and destination operate appropriately configured DTNs.

Design pattern #2: Automation for Research Facilities

The second pattern is concerned with the automation of mundane but critical tasks that relate to the acquisition and dissemination of data from instruments, experimental facilities, and large-scale simulations. Its implementation uses many of the constructs applied in the MRDP pattern, but for a different purpose. User facilities that host instruments face the challenge of providing automated secure data management workflows to their users enabling them to access data they have collected when they need it, where they need it and in formats needed by their processing tools. While data types and volumes, and duration of experiment may vary, instrument facilities ranging from campus core facilities that have sequencers or microscopes, to national facilities such as the light sources, have a common need for scalable secure data management solution. With the facility operating round the clock, and beam time use as a key metric, operators of the facility need services and solutions that not only allows them to automate a large part of the data management workflow, but also provides them with a platform that can be extended and integrated.
with their local authentication and data flow systems.

Current practices often require copying of the collected data into physical media that is then carried back to the user’s home institution for analysis and sharing. This process is error prone and time consuming, and furthermore does not provide any timely feedback to the experiment such that users can improve the quality of data gathered while they are at the facility. It also places the burden on the researchers to ensure integrity of the copied data, and significantly increases the time to results from such experiments.

The scalable data management platform leverages the high performance network at institutions, science DMZ concepts and a platform for secure data sharing to deliver a solution that allows near-real time data access at high speeds, while still providing fine grained access control permissions on the data.

Data access is via DTNs that are directly connected to high bandwidth networks to allow efficient data transfer to and from these nodes. Acquisition machines that gather data either share a file system with the DTNs or use automated internal transfers to move data to DTN-accessible storage. (See github.com/globus/automation-examples for example code for such transfers.) Security integration that leverages local authentication and policy is made possible by using Globus Auth, which allows single sign on with federated identity and secure access to data management services using standards such as OAuth 2.0. Data sharing services that leverage this security platform, such as Globus Sharing, provide fine-grained access control, allowing a facility to ensure that experiment data are available only to authorized users.

This design pattern, like the first, makes heavy use of Globus platform APIs to integrate Globus security and data sharing features with existing facility data management workflows and user management system. This usage is critical to delivering an end-to-end solution that enables instant and automate data sharing.

Automation case study: Light source data pipelines. The Advanced Photon Source (APS) at Argonne National Laboratory is typical of many experimental facilities worldwide in that it serves large numbers (thousands) of researchers every year, most of whom visit just for a few days to collect data and then return to their home institution. In the past, data produced during an experiment was invariably carried back on physical media. However, as data sizes have grown and experiments have become more collaborative, that approach has become less effective. Users want to share data with remote collaborators during an experiment, for example for quality control. Data transfer via network is needed; the challenge is to integrate data transfer into the experimental workflow of the facility in a way that is fully automated, secure, reliable, and scalable to thousands of users and datasets.

Several APS beamlines have adopted a solution that uses the research automation pattern to leverage high performance DTNs and to link local authentication and authorization to their experiment management system and Globus data services. DMagic (dmagic.readthedocs.io) provides the implementation. When an experiment is approved, a set of associated researchers are registered in the APS administrative database as approved participants. Before the experiment begins, DMagic creates a shared endpoint on an Argonne storage system with high-speed DTN access. DMagic then retrieves from the APS scheduling system the list of approved users for the experiment, and uses Globus APIs to grant those users read permissions on the shared endpoint. It then monitors the experiment data directory at the APS facility and copies new files automatically to that shared endpoint, from which it can be retrieved by any approved user. APS facility operators also have access to administrative and monitoring capabilities that allow them to check for successful transfer of the data prior to deleting data from their local storage.

Background on the Globus services used in the design patterns

Globus provides data and identity management capabilities designed for the research community. These capabilities are delivered via a cloud-hosted software- and platform-as-a-service model, enabling users to access them through their web browser and developers to invoke them via powerful APIs. We describe here Globus capabilities for managing and transferring data and for authenticating users and authorizing access.

Globus allows data to be remotely managed across its pool of more than 10,000 accessible storage systems (called “endpoints”). A storage system is made accessible to Globus, and thus capable of high performance and reliable data transfer, by installing Globus Connect software. Globus Connect is offered in two versions: Globus Connect Personal for single-user deployments (e.g., a laptop or PC) and Globus Connect Server for
multi-user deployments (e.g., a shared server or DTN).

Globus Transfer capabilities provide high performance and reliable third party data transfer. The Globus service manages the entire transfer process, including coordinating authentication at source and destination; establishing a high performance data channel using the GridFTP protocol, with configuration optimized for transfer; ensuring data integrity by comparing source/destination checksums; and recovering from any errors during the transfer. Globus, by default, enforces the data access permissions represented by the underlying system; however, it also allows these access decisions to be managed through the cloud service. In the latter mode, called Globus Sharing, users may associate user- or group-based access control lists (ACLs) with particular file paths. Globus checks and enforces these ACLs when other users attempt to read or write to those paths.

Globus Auth provides identity and access management platform capabilities. It brokers authentication and authorization interactions between end-users, identity providers, resource servers (services), and clients (e.g., web, mobile, desktop, and command line applications, and other services). It implements standard web protocols, such as OAuth 2 and OpenID Connect, that allow it to be integrated easily with external applications using standard client libraries. These protocols enable third-party applications to authenticate users (using their preferred identity) directly with the chosen identity provider. Globus Auth then returns access tokens that the third-party application can use to validate the user’s identity and to perform actions on behalf of that user, within an agreed upon scope. Globus Auth implements an identity federation model via which diverse identities can be linked, and such that presentation of one identity may support authorization for the set of identities. Integration with Globus Groups supports group-based authorization using user-managed groups.

Summary

We have presented two design patterns that capture important characteristics of data-driven discovery systems that we have observed in frequent use. Our goal in so doing is to reduce the costs associated with assisting research teams by suggesting stylized ways of thinking about their problems and then describing proven methods for addressing those problems. We believe that, as in other areas of computing, the identification and use of familiar design patterns can simplify development, deployment, and operation.

The two design patterns and three use cases that we present here illustrate how existing infrastructure (e.g., storage and compute provided by a research computing center) can be enhanced via the use of higher level “building blocks” provided by the Globus platform, including authentication and authorization, data access and transfer, and data publication and discovery. Collectively, as these examples show, Globus capabilities address the entire data lifecycle: from data acquisition through to publication and archiving. The widespread deployment of Globus services makes it straightforward to extend the reach of systems constructed with these patterns across campuses and institutions.

Acknowledgments

We thanks the Globus team for the development of the technologies described here. This work was supported in part by NSF grant ACI-1148484 and by the DOE under contract DE-AC02-06CH11357.

References

